
REAL-TIME EMBEDDED SYSTEMS:
TASK SCHEDULING

1. Real-Time Systems and Their Typical Features

2. Task Scheduling Policies

3. Static Cyclic Scheduling

4. What is Good and Bad with Static Cyclic Scheduling

5. Priority Based Preemptive Scheduling

6. Schedulability Analysis

1 of 36

System model

Prototype

Informal Specification,
Constraints

Functional
SimulationModeling

Testing

Arch. Selection

MappingSystem
architecture

Estimation

Mapped and
scheduled model

Scheduling

OK

 not OK

OK
Fabricationnot OK

Formal
Verification

Softw. model

not OK
Simulation

Formal
Verification

Hardw. model

Softw. Generation Hardw. Synthesis

Softw. blocks Hardw. blocks

Simulation

Simulation

2 of 36

3 of 36

Real-Time Systems

n Many (most) embedded systems are real-time systems.
r A real-time system is a computer system in which the correctness of

the system behavior depends not only on the logical results of the
computations but also on the time when the results are produced.

Examples:

r Process control systems
r Computer-integrated manufacturing

systems
r Aerospace and avionics systems
r Automotive electronics

r Medical equipment
r Nuclear power plant control
r Defence systems
r Consumer electronics
r Multimedia
r Telecommunications

4 of 36

Real-Time Systems: Some Typical Features

n They are time-critical.
The failure to meet time constraints can lead to degradation of the service or
to catastrophe.

n They are made up of concurrent tasks.
The tasks share resources (e.g. processor) and communicate to each other.
This makes scheduling of tasks a central problem.

n Reliability and fault tolerance are essential.

Many applications are safety critical.

5 of 36

Soft and Hard Real-Time Systems
n Time constraints are often expressed as deadlines at which tasks have to

complete their execution.

A deadline imposed on a task can be:

6 of 36

Soft and Hard Real-Time Systems
n Time constraints are often expressed as deadlines at which tasks have to

complete their execution.

A deadline imposed on a task can be:

r Hard deadline: has to be met strictly, if not Þ "catastrophe".
Has to be guaranteed at design time!

7 of 36

Soft and Hard Real-Time Systems
n Time constraints are often expressed as deadlines at which tasks have to

complete their execution.

A deadline imposed on a task can be:

r Hard deadline: has to be met strictly, if not Þ "catastrophe".
Has to be guaranteed at design time!

r Soft deadlines: tasks can finish after their deadline, although the value
provided by completion may degrade with time.

8 of 36

Soft and Hard Real-Time Systems
n Time constraints are often expressed as deadlines at which tasks have to

complete their execution.

A deadline imposed on a task can be:

r Hard deadline: has to be met strictly, if not Þ "catastrophe".
Has to be guaranteed at design time!

r Soft deadlines: tasks can finish after their deadline, although the value
provided by completion may degrade with time. (Deadline miss ratio is
often a key metric and is linked with Quality-of-Service of an
application)

r Firm deadlines: similar to hard deadlines, but if the deadline is missed
there is no catastrophe; only the result produced is of no use any more.

9 of 36

Predictability

n Predictability is a very important property of any real-time system.

n Predictability means that it is possible to guarantee that deadlines are met as
imposed by requirements:

r Hard deadlines are always fulfilled.

r Soft deadlines are fulfilled to a degree which is sufficient for the
required quality of service.

10 of 36

Predictability

Some problems concerning predictability:

n Determine worst case execution times for each task.
n Determine worst case communication delays on the interconnection

network.

n Determine time overheads due to operating system (interrupt handling, task
management, context switch, etc.).

11 of 36

Predictability

Some problems concerning predictability:

n Determine worst case execution times for each task.
n Determine worst case communication delays on the interconnection

network.

n Determine time overheads due to operating system (interrupt handling, task
management, context switch, etc.).

r After the above problems have been solved, comes the "big question":

Can the given tasks and their related communications be scheduled on
the available resources (processors, buses), so that deadlines are
satisfied?

12 of 36

Task Scheduling

The scheduling problem:

Which task and communication has to be executed at a certain moment on a
given processor or bus respectively, so that time constraints are fulfilled?

n A set of tasks is schedulable if, given a certain scheduling policy, all
constraints will be completed (which means, a solution to the scheduling
problem can be found).

n At least for hard real-time systems, it is needed to check off-line, in advance,
if the system is schedulable.

13 of 36

Task Parameters

What do we assume to know about a task?

n Computation time (worst case computation time), c.
For communication, we assume to know communication time.

n Deadline for task completion, d.

n Regularity of task arrival:

r periodic tasks, with period T (infinite sequence of identical activities).

r aperiodic tasks: no fixed period of arrival
- sporadic tasks: bound minimum inter-arrival time Þ deadlines can

 be guaranteed off-line.
- If no bounds on inter-arrival time are known, schedulability cannot

be guaranteed.

14 of 36

Scheduling Policies

n Static cyclic scheduling
A table is generated off-line containing activation times for each task
(communication). The activation sequence captured by the table is repeated
cyclically.

15 of 36

Scheduling Policies

n Static cyclic scheduling
A table is generated off-line containing activation times for each task
(communication). The activation sequence captured by the table is repeated
cyclically.

n Priority based scheduling
Tasks are activated in response to a certain event. In case of conflict (several
tasks ready to execute on the same processor), priorities are considered.

16 of 36

Scheduling Policies

n Preemptive scheduling

r A running task can be interrupted in order to execute another task.

n Non-preemptive scheduling

r A task, once started, may not be stopped.

17 of 36

Static Cyclic Scheduling

n Generate activation times for each task instance:

r These times determine the task activations over a (hyper)period Th.
r This sequence of activations is repeated in a cyclic manner.

- If all tasks have the same period T Þ Th = T.

- If the tasks have different periods T1, T2, ..., Tn Þ Th = LCM(T1, T2, ...,Tn).

18 of 36

Static Cyclic Scheduling: Example
Period=deadline Worst case comp. time

t1 10 2
t2 20 4
t3 40 3
t4 40 5
System management 10 1 Th = LCM(10, 20, 40) = 40

Static Cyclic Scheduling: Example
Period=deadline Worst case comp. time

t1 10 2
t2 20 4
t3 40 3
t4 40 5
System management 10 1

t1

t2

t3

t4

10 20 30 40

2

int. 399 19 29
19 of 36

6

12

22

Th = LCM(10, 20, 40) = 40

Static Cyclic Scheduling: Example
Period=deadline Worst case comp. time

t1 10 2
t2 20 4
t3 40 3
t4 40 17
System management 10 1

t1

t2

t3

t4

10 20 30 40

2

6

12

22

Th = LCM(10, 20, 40) = 40

?
int. 399 19 29

20 of 36

Static Cyclic Scheduling: Example
Period=deadline Worst case comp. time

t1 10 2
t2 20 4
t3 40 3
t4 40 17
System management 10 1

t1

t2

t3

t4

10 20 30 40

2

6

12

22

26 32

Th = LCM(10, 20, 40) = 40

int. 399 19 29
21 of 36

Static Cyclic Scheduling
n Often we have to schedule data dependent tasks; the platform may consist of

several processor nodes. Example earlier lecture:

T1

T8

T7

T3

T5 T6

T4

T2

T1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54Time

µp3

µp4

bus

T3 T8

T2

T6 T7

T5 T4

C1-2

22 of 36

C5-7C3-5 C4-8

23 of 36

What is Good with Static Cyclic Scheduling?

n High predictability

n Easy to debug

n Low execution time overhead (not much to do for the real-time kernel during
execution time)

24 of 36

What is Bad with Static Cyclic Scheduling?

n Not flexible:
r quality degrades rapidly if periods and execution times deviate from

those predicted;
r if new tasks are added, the whole schedule has to be regenerated.

n Urgent events (interrupts) are handled purely:
r time slots are statically allocated for polling and handling such events.

n Very long hyper-periods have to be avoided:
r the periods of individual tasks have to be adjusted;

this can lead to artificially reduced periods Þ artificially increased load
Þ waste of processor time.

n Tasks have to be “manually” split, in order to fit into available slots.

25 of 36

Priority Based Preemptive Scheduling
n No schedule (predetermined activation times) is generated off-line. Tasks are

activated as response to events (e.g. arrival of a signal, message, etc.).

n At any given time the highest priority ready task is running.
If several tasks are ready to be activated on a processor, the highest priority
task will be executed.

n Tasks can be preempted at any moment.
If a task becomes ready to be executed (the respective event has occurred),
and it has a higher priority than the running task, the running task will be
preempted and the new one will execute.

Priority Based Preemptive Scheduling
n No schedule (predetermined activation times) is generated off-line. Tasks are

activated as response to events (e.g. arrival of a signal, message, etc.).

n At any given time the highest priority ready task is running.
If several tasks are ready to be activated on a processor, the highest priority
task will be executed.

n Tasks can be preempted at any moment.
If a task becomes ready to be executed (the respective event has occurred),
and it has a higher priority than the running task, the running task will be
preempted and the new one will execute.

n Will the tasks meet their deadlines?
Schedulability analysis tries to answer this question.

26 of 36

27 of 36

Schedulability Analysis

n As result of research in real-time systems, a mathematical apparatus has
been developed or schedulability analysis.

These results are in form of conditions which can be used in order to check if
a certain task set is schedulable (all tasks meet their deadline) or not.

n Schedulability analysis can be based on

r Sufficient conditions (sometimes too pessimistic).
r Necessary and sufficient conditions (sometimes difficult to apply).

n We will show some of the simpler formulas, only to give a “feeling”.

Schedulability Analysis
Example from
previous lecture:

µP

t2 t1
t3

Does this work?
Can each of the tasks work at the
required rate (period)?

n t1 needs to run for 40 µs every 100 µs: 40% of CPU
n t2 needs to run for 10 µs every 30 µs: 33% of CPU
n t3 needs to run for 10 µs every 25 µs: 40% of CPU

Total: 113%
This will not work!

Task t1
Period T1 = 100 µs

WCET C1 = 40 µs

Task t2
Period T2 = 30 µs

WCET C2 = 10 µs

Task t3

28 of 36

Period T3 = 25 µs

WCET C3 = 10 µs

Schedulability Analysis
Example from
previous lecture:

µP

t2 t1
t3

Does this work?
Can each of the tasks work at the
required rate (period)?

But what if the Total Utilisation is less/equal 100% ?
Will it always work? (Deadline = Period)

Task t1
Period T1 = 100 µs

WCET C1 = 10 µs

Task t2
Period T2 = 30 µs

WCET C2 = 10 µs

Task t3

29 of 36

Period T3 = 25 µs

WCET C3 = 10 µs

Schedulability Analysis
Example from
previous lecture:

µP

t2 t1
t3

Does this work?
Can each of the tasks work at the
required rate (period)?

But what if the Total Utilisation is less/equal 100% ?
Will it always work? (Deadline = Period)
DEPENDS!

Task t1
Period T1 = 100 µs

WCET C1 = 10 µs

Task t2
Period T2 = 30 µs

WCET C2 = 10 µs

Task t3

30 of 36

Period T3 = 25 µs

WCET C3 = 10 µs

31 of 36

Schedulability Analysis

n A set of n tasks, with period Ti and worst case execution time ci.

Their deadline is equal with their period: di = Ti.

At any moment the run-time monitor lets the task with the closest deadline
run (EDF: Earliest Deadline First scheduling).

32 of 36

Schedulability Analysis

n A set of n tasks, with period Ti and worst case execution time ci.

Their deadline is equal with their period: di = Ti.

At any moment the run-time monitor lets the task with the closest deadline
run (EDF: Earliest Deadline First scheduling).

n With EDF a sufficient and necessary condition for the task set to be

schedulable is that the total processor load is below/equal 100%:

ci

i = 1 Ti

n
å ---- £ 1

33 of 36

Schedulability Analysis

n A set of n tasks, with period Ti and worst case execution time ci.

Their deadline is equal with their period: di = Ti.

Task priorities are statically assigned to tasks (by the designer or operating
system), according to their period: the task with shorter period gets the
higher priority. This is called Rate Monotonic (RM) scheduling.
(This is different from EDF!)

n A sufficient (not necessary) condition for the task set to be schedulable:

(This is called the ‘utilization bound’)

ci

i = 1 Ti

1

è ø

ç n ÷
n æ -- ö
å ---- £ nç2 – 1÷

Utilization Bound (Rate Monotonic
Scheduling)

Maximum utilization 69-70%
for large number of tasks

65,0%

70,0%

75,0%

80,0%

85,0%

90,0%

95,0%

100,0%

0 5 10 15 20 25 30 35

U
til

iz
at

io
n

bo
un

d

Number of tasks

35 of 36

Schedulability Analysis

n A set of n tasks, with period Ti and worst case execution time ci.

Arbitrary deadline: di £ Ti (This is different from the previous cases!)

Task priorities are statically assigned, by the designer, and can be arbitrary.

For example: Deadline Monotonic (DM) scheduling, where task priorities are
assigned based on task deadlines (and not periods!)

Schedulability Analysis

n A set of n tasks, with period Ti and worst case execution time ci.

Arbitrary deadline: di £ Ti (This is different from the previous cases!)

Task priorities are statically assigned, by the designer, and can be arbitrary.

n The response time for each task can be calculated based on the following
recurrence relation:

n A necessary and sufficient condition for schedulability: ri £ di

i ir = c +
ri
Tk
----- ck

i"k Î hp
å

This is the
interference
from higher
priority tasks.

36 of 36

Schedulability Analysis

Let us calculate the worst-case response time of Task 1:

r_1 = C_i + ceil(r_1 / T_2) * C_2 + ceil(r_1 / T_3) * C_3

r_1 = 10 + ceil(r_1 / 30) * 10 + ceil(r_1 / 25) * 10
r_1 = 10 * (1 + ceil(r_1 / 30) + ceil(r_1 / 25))

Fixed-point iteration:
r_1,k+1 = 10 * (1 + ceil(r_1,k / 30) + ceil(r_1,k / 25))

Initialize with execution time of Task 1 and start iteration.
Continue as long calculated response time is larger than previous iteration.

i ir = c +
ri
Tk
----- ck

i"k Î hp
å

37 of 36

Period T1 = 100 µs

WCET C1 = 10 µs

LOW Priority

Period T2 = 30 µs

WCET C2 = 10 µs

MEDIUM Priority

Period T3 = 25 µs

WCET C3 = 10 µs

HIGH PRIORITY

Worst-case interference
from Task 3

Schedulability Analysis
Fixed-point iteration:
r_1,k+1 = 10 * (1 + ceil(r_1,k / 30) + ceil(r_1,k / 25))

r_1,0 = C_1 = 10

r_1,1 = 10 * (1 + ceil(10 / 30) + ceil(10 / 25)) = 10 * (1 + 1 + 1) = 30

r_1,2 = 10 * (1 + ceil(30 / 30) + ceil(30 / 25)) = 10 * (1 + 1 + 2) = 40

r_1,3 = 10 * (1 + ceil(40 / 30) + ceil(40 / 25)) = 10 * (1 + 2 + 2) = 50

r_1,4 = 10 * (1 + ceil(50 / 30) + ceil(50 / 25)) = 10 * (1 + 2 + 2) = 50 STOP!

Worst-case response time of task 1 is 50.
Less than the deadline (period) that is 100.
Task 1 is schedulable!
Repeat the process for Task 2 (simpler equation) and Task 3 (trivial).

38 of 36

39 of 36

Schedulability Analysis

n Schedulability conditions exist today that handle more general systems:

r Deadlines which can be larger than the period

r Tasks with share critical resources

r Multiprocessors

